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A Finite Difference Scheme for the K(2, 2) Compacton Equation
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The Ki2, 2} equation, introduced by Rosenau and Hyman, is a
wave equation that possesses solutions {compactons) that vanish
outside a bounded interval of the spatial axis. A finite difference
scheme for this equation is suggested that can successfully cope
with compacton interactions leading to negative waves. We show
rigorously that in those interactions a loss of smoothness of the
solution necessarily takes place., @ 1995 Academic Press, Inc.

L. INTRODUCTION

The purpose of this paper is to present a finite differcnce
method for the numerical integration of the K(2, 2) eguation
introduced by Rosenau and Hyman {4]

tr + (1) + (1)eny = 0. (1)

The most salient feature of (1) is the existence of travelling
wave solutions that are compactly supported, i.e., solutions that
vantsh outside a bounded X-interval. These solutions are called
compactons. Thus, while the standard solitons of the Kor-
teweg—de Vries or cubic Sclhiroedinger equations become expo-
nentially spall as [X] — oo, compactons beeome actually O at
a finite distance [rom the origin.

The anatytic expression ol the compactons is

uX, Ty = 4%(:052 X—:\—:—jg

, |X — T — Xul =27,
with &t = 0 for |[X — AT — X,| > 2m. Therefore compactons
are continuous and possess continuous derivatives, but their
second derivatives jump at|X — A7 — X, = 2. The compacton
solutions form a two-parameter family: A represents the velocity
and X, determines the initial location along the X-axis. Note
that the compacton amplitude 4M/3 depends linearly on the
velocity, but the compacton widih 47 is independent of A. When
A is negative the compaclon takes negative values and moves
to the lefr; it is then referred to as *“anticompacton.”

The numerical integration of (1) is not an easy task. Two
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sources ol trouble are mentioned in [4]. First, the lack of
smoothness of the compactons implies that high rates of conver-
gence cannot be attained even when using methods that are
formally of high order. Also the nonlipear “‘dispersive’” term
(1*}yyy, When expanded, includes a diffusionlike term Guyyy
that, in regions with uy; > 0, operates as a backward diffusion
operator. Quoting from j4], *‘the solution would be unstable if
it were not for the stabilizing nonlinear dispersion; this balance
is easily lost in the numerical approximation.”

There is a third source of difficulties not mentioned in [4].
As we rigorously prove in the appendix, smooth (H?) solutions
of (1) that are positive at T = 0 remain positive. Therefore
solutions that start being posttive and do not stay positive must
leave the space H?, no matter their initial smoothness. In this
sense, the K(2, 2) equation is similar 1o nonlinear hyperbolic
conservation laws, like w; + (') = (. in that smeoth initial
data give rise 1o nonsmooth soluiions. In fact, our numerical
experiments, clearly indicate that solutions of (1) are likely to
develop shocks.

The numerical results presented in [4] were derived by means
of pseudospectral technigues. We have experimented at length
with spectral and pscudospectral methods and found that their
performance is not very satistzetory. The sources of numerical
dilficultics discussed above imply that spectral and pseudospec-
tral methods cannot operate unless supplemented by suitable
filters. The behaviour of the filters we tried was erratic to say
the least. Furthermore, it was not easy for us to tell apart the
effects spuriously introduced by the filters from small features
of the true solution being investigated.

For these reasons, we decided to try finite difference methods.
The scheme presented in this paper is the only one, among those
we have tried, that performs satisfactority. The new scheme is
presented in Section 2 and tested in Section 3.

2. THE SCHEME

In the numerical experiments, it is sometimes convenient to
use a moving frame of reference v = X — T, t = T, and write
Eq. (1) as

t, ~ ¢ty + () + @) = 0. (2)

in the moving coordinates, compactons of parameter A travel
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at a speed A — ¢, and a judicious choice of ¢, may enable us
to see a chosen compacton as stationary or almost stationary.
We add artificial viscosity in order to cater to solutions with
shocks. Tt is well known that the viscosity terms can be added
either directly to the difference scheme or to the differential
equation itself. Here we chose the second alternative and intro-
duce the regularized version of (2) given by
u, — ooty + (), + @), T e, =0, >0 (3)
If {x;} represents a uniform grid with spacing 7 and U(?)
denotes the numerical approximation to u(x;, 1), the difference
method for (3) reads
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The coefficients of the finite difference replacements of the
operators d, and 4 and the coefficients of the time-derivatives
U ; were used in [5] for the Korteweg—de Vries equation (see
also [11). These coefficients are chosen so that, when £ = 0,
(4) is consistent of order 4. (Recall that this does not ensure
that convergence of order O(h*) takes place; we are dealing
with nonsmocth solutions.) The weights of the discretization
of 9% are standard; for & > 0 the formal order of consistency
is only 2.

3. NUMERICAL EXPERIMENTS

In the numerical experiments we work in an interval 0 =
x = L with periodic boundary conditions. We set o = L/J,
with J a positive integer and consider the grid points x; = jh,
Jj =1, .., J. Then (4) is a J-dimensional system of ordinary
differential equations that we integrate by means of the standard
implicit midpoint rule with a constant step size k. Recall that
for y = f(y) the implicit midpoint rule is given by

},n+| -y _ ()ﬂﬂ + }’”)
k 2 '

This methed is consistent for second order, which matches that
of the spatial discretization when € > 0. It is also known that
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TABLE 1

One Compacton Solution

] k Amplitude error Phase error
400 1/20 2.10E-3 431E-4
800 1/40 4.97E-6 1.21E-4

1600 1780 1.29E-6 3.47E-5
3200 1/160 3.26E-7 8.55E-6
6400 1/320 8.14E-8 2.14E-6

Note. Errors at t = 75 for different discretization parameters, no artificial vis-
cosity.

the midpoint rule is a suitable method for wave problems, where
it may outperform higher order methods; see [2, 3].

We have integrated the inviscid (¢ = Q) equation with ¢, =
2, L =90,0 = ¢=75, and an initial condition corresponding
to a compacton of parameter A = 1. The compacton has ampli-
tude 4 and travels 75 units (in the moving frame of reference
its speed is 1 — 2 = —1). Table I provides, for vartous values
of & and k, the errors in the amplitude and location of the
numerically computed compacton at the final time t = 75,
The amplitude of the numerical wave is larger than the true
amplitude and correspondingly the numerical wave travels more
than 75 units. The table shows that the errors are divided by
4 when h and % are simultaneously halved. The grid sizes
reported are rather fine; for instance, J = 400 implies that there
are about 56 grid points x; within the compacton, Nevertheless,
it is remarkable that the scheme yields such accurate results in
a long time simulation of a nonsmooth solution of a potentially
unstable equation. In actual fact, other finite difference or spec-
tra discretizations are utterly unable to integrate the problem
in the absence of artificial viscosity/filtering.

Experiments were also performed to assess the effect of the
viscosity term. We integrated the compacton considered in
Table I, but now we set & = 107 or £ = 107, The values of
h and k were chosen so small that the effect of numerical
integration is negligible with respect to the perturbation intro-
duced by the viscosity term. The results displayed in Table [I
nicely reveal an O(g) behaviour. Now the amplitude of the
numerical solution is, as expected, less than # and, correspond-
ingly, the numerical wave travels less than 75 units. From

TABLE I1I

One Compacton Solution

& Amplitude error Phase error
1E-3 2.53E-3 6.32E-2
1E-4 2.53E-4 6.32E-3

Nete. Errors att = 75 on a fine grid for different
values of the viscosity parameter .
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FIG. 1. Compacton interaction, ¢ = ().

these experiments we conclude that the introduction of the
regularization term with £ = 107 or & = 107* does not have
a significant effect on the compacton motion; with £ = 107
the amplitude damping in a long time integration is only of the
order of 0.01%.

We finally describe an experiment involving the interaction
of two compactons. The parameter values are . = 90, ¢, = 2,
g = 107 and the solution is integrated in a time interval 0 =
t = 75. The initial condition (see Fig. 1) consists of two com-
pactons that we call (a) and (b), with parameters A, = 2 and
Ay = 0.5 located next to each other. The taller compacton (a)
is initially located at x = 70 and the shorter compacton (b) is
initially located at x = 70 + 4. Due to the value of ¢,
compacton (a) is stationary while compacton (b) moves to the
left with speed 1.5. The discretization parameters are J = 6400
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FIG. 2. Compacton interaction, t = 10.
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FIG. 3. Compacton interaction, 1 = 20},

(h = 0.014) and & = g5 = 0.003. For J = 3200, k = 1k the
integration could not be carried out until the final time ¢ = 75.

Figure 2 corresponds to ¢ = 10, Both compactons have provi-
sionally merged into a single wave of height 2.662; a negarive
wave, labelled (m), has been born. The result in the appendix
implies that the solution has left the space A7 and in fact we
see in the figure that a shock discontinuity has appeared between
the waves (a) + (b) and (m). The overshoots in this and the
following figures do not appear to be numerical artifacts; we
have checked that they persist after grid refinement.

The situation at + = 20 is pictured in Fig. 3. Compactons
(a} and (b) have emerged from the interaction and move with
the expected velocities 0 and —1.5. The amplitudes of (a), (b),
and (m) may be seen in Table [11.

At r = 30 (Fig. 4), a new positive wave (c¢) has emerged
from (b) and at ¢+ = 40 (Fig. 5) (m) is about to collide with
(a). Figure 6, at t = 43, shows (m), emerging from the interac-
tien and (c) colliding with (a). At this time the height of (a) is

TABLE III

Compacton Interaction

t (a) (b) () (m}) (n}

0 2.667 0.667 — — —
10 ok Hokk _ —0.041 —
20 2.667 0.659 — —0.041 —
30 2.667 0.663 0.037 —0.04} —
40 2.667 0.664 0.037 —0.041 —
45 EE S 0664 &Kk *kk _
55 2.667 0.664 0.035 —0.042 —
65 FEx *aok 0.035 —0.042 —-0.041
75 2.067 0.656 0.035 -0.042 —0.041

Note. Amplitudes of the different waves as functions of time.
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FIG. 4. Compacton interaction, ¢ = 30,

2.674. Att = 55 (Fig. 7) both {m)} and (c) have crossed through
(a), and (b) is about to collide a second time with (a).

Figure 8 depicts the situation at 1 = 65 during the second
collision of (a) and (b); a comparison with Fig. 2 is in order.
A new negative wave (n) is being born as a consequence of
this collision; its height and shape are the same as those of
{m), born in the first {a}—(b) interaction. Figure 9 corresponds
to the final time ¢ = 75 and should be compared with Fig. 3.

We see in Table III that, when two compactons interact,
the tallest emerges with its amplitude unchanged (or at least
unchanged within the accuracy of the experiment). The short
compactoen, however, undergoes a decrease in amplitude. Com-
pactons interact almost elastically and the equation reveals a
strong tendency to oppose radiation; see, e.g., the long flat
stretch in Fig. 5. Another feature worth noting is that (Fig. 9)
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FIG. 5. Compacton interaction, + = 40.
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whenever a negative wave is immediately to the left of a positive
wave there is a shock between them. On the other hand, a
negative wave immediately to the right of a positive wave does
not lead to the formation of a shock.

APPENDIX

Here we consider the initial value problem for (1), subject
to periodic boundary conditions. The case of the pure initial
value problem may be treated similarly.

We multiply (1) by a test function ¥ and integrate by parts
to arrive at

(ur, X) — (1%, dxx) + (i, 5x) = 0, (A1)

where (-, ) denotes the standard £ inner product. By a weak
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FIG. 7. Compacton interaction, f = 55.
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FIG. 8. Compacton interaction, 1 = 63.

solution of (1) we understand a mapping » € ‘6(0, T,...), HH N
G0, Towl, LD such that (A1) holds for each time 0 = T =
T and each x € H*. Note that H* is closed under function
multiplication and therefore, for a weak solution, i is, at each
time 7, in #° Also H? is embedded in the space of continuous
functions and thus weak solutions are continuous.
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FIG. 9. Compacton interaction, t = 75,
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The following result was obtained as a consequence of a
conversation with Professor Ch, Elliott.

THeOREM 1. A weak solution of (1) taking nonnegative
values at time 0 remains nonnegative at all times 0 =T =T, ..

Proof. If u_ denotes the negative part of u, then {u_)" is,
for each fixed time 7, an H* function that can play the role of
x in (Al), This leads to the equality

(e, (u-)) — (', Ox(u-Y) + (3nd?, 3fu-)’y = 0.

It is now possible to replace u_ by u; this does not change the
value of the inner products because the second factor of each
inner product vanishes at the values of X for which «- and u
are different. This yields

(Cu)r, (oY) — ()% (- )y F (9x(u), xue-)’) = 0,

a formula that readily implies ((u_-}r, (u_)*) = ¢ or, in other
waords,

‘C%J (Y dXx = 0.

If this integral vanishes at time O, then it vanishes at all later
times. |

The same result is true by changing ‘‘nonnegative’ into
“‘nonpositive.”’
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